Imaging of Acute Ischemic and Hemorrhagic Stroke

Dr Richard Aviv
Associate Professor University of Toronto, Division of Neuroradiology,
Sunnybrook Health Sciences Center
Disclosures

• None
Objectives

– Stroke detection
– Typical scan protocols
– Methods of stroke detection
 • Limitations
 • Renal impairment
– Developments in imaging of Intracranial Hemorrhage
 • CTA detection of causes of secondary ICH detection
 • Spot Sign
– CT dose and dose reduction strategies
Detecting infarct

• Reassurance prior to treatment

• The larger the initial infarct
 – ↑ Risk of hemorrhagic transformation
 • Progressive increased risk with infarct size
 – ↑ Size of final infarct
 – ↓ Final clinical outcome

CT Stroke Protocol

CT Scan time: 3-5 minutes
Contrast: 100-140 ml (iodinated)
CT stroke detection

Proven performance (NINDS, ECASS ³,⁴)

Sensitivity <3hrs 40-60%⁵
Specificity 85%, PPV 96%, NPV 27%

Earliest time to detection 45 minutes

Loss of Lentiform nucleus¹

Loss of Insular ribbon² and grey/white differentiation

Strategies to improve CT detection

- Stroke window sensitivity 20%\(^6\)
 - WW 35 WL 35
- CTA-SI sensitivity 20%\(^7\)
- CTP maps sensitivity 20%\(^8\)
• 191 acute stroke presentations
 – 4 blinded inexperienced reviewers
 – Combined clinical/ radiological outcome measure
 – LOC score for stroke presence: 1-5
 – Etiology
 • Stroke present 123 (64%)
 • TIA 35 (18%)
 • Mimic 32 (17%)
Diagnostic performance of multimodal CT protocol

<table>
<thead>
<tr>
<th>Level of confidence ≥4</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC-CT</td>
<td>40.8</td>
<td>86.6</td>
</tr>
<tr>
<td>NC-CT+CTA-SI</td>
<td>50.8</td>
<td>86.2</td>
</tr>
<tr>
<td>NC-CT+ CTA-SI +CTP</td>
<td>70.6</td>
<td>86.8</td>
</tr>
</tbody>
</table>

AUC
NCCT 0.67
CTA 0.72
CTP 0.81

Kappa: 0.3-0.4 to 0.4-0.6 to 0.6-0.8

Results from expert readers²⁻⁵:
Sensitivity 0.79-0.90
Specificity 0.68-0.79

CTP Cost effectiveness

• 1. Penumbra based selection
 – reduced mortality
 – Improve functional outcome 0.59%
 – <4.5 hrs: Cost saving to hospital
 • 3-4.5hr: Reduce by 0.8% pts receiving ivTPA

• 2. CTP over NCCT
 – 3/12:
 • lower cost (-$1716)
 • Greater QALY 0.004
 • Number needed to screen to avoid 1 DSA was 2
 – Lifetime
 • Lower cost (-$2058)
 • Greater QALY 0.008

1) AJNR 2010;31:1669 2) Neurology 2010;75:1678
MRI Stroke Protocol

MRI Scan time: 10-15 minutes
Contrast: 15 ml (Gadolinium)
MRI stroke detection

- Performance
 - Conventional MRI
 - Sensitivity similar to NCCT <3hrs
 - Usually <24hrs all T2 and 50% T1 abnormal
 - DWI
 - Sensitivity 88-100%
 - Specificity 95-100%
 - False negatives
 - 5% DWI in 24 hrs\(^1\)
 - 10* more likely posterior fossa
 - Small subcortical infarcts\(^2\)
 - False positives
 - Abscess, cellular tumor, encephalitis, CJD, seizure

False positive Diffusion

Glioma/ cellular tumor

Abscess

Encephalitis/ CJD

Seizure/ Venous thrombosis

T2 DWI ADC T1+c
Brain swelling

- Increased CBV
- Unstable state
- 60% infarct

Hyperdense/ hypointense MCA sign

- 35-50% MCA strokes
- Predicts
 - >100ml at risk
 - Poorer response to tPA
 - Mortality 5-45%
- Survivors poor outcome
- Sensitivity 78%
- Specificity 93%

Beware: HCT, CA++

Eye sign

- High PPV for side of infarct 93\%\(^1\)
- Caveat
 - Brainstem & thalamic lesions
 - Post-ictal states
- Predicts poor outcome\(^2\)
 - Mortality 44\% vs 12\% if absent

CT Fogging

- Pseudonormalisation 2-3 weeks
- Mechanism is uncertain
- Edema reversal, microhemorrhage, ischemic related demyelination or macrophage infiltration

9 July

14 July
CT limitations-1

Small Lesion Profile

Microangiopathic change

Radiation dose - cancer risk

Head CT 1/3 of all CT exams

1) NEJM 2007:357:2277
• Renal impairment CIN (25% \uparrowCr)
 • N=831 pts 1,2
 – CIN 3%
 – No Cr available at time of scan CIN 1.8-2%
 – No renal failure
 • N=575 NCCT/CTA/CTP±DSA vs 343 control AIS patients
 – CIN 5% vs 10% control group3
 • N=348 CTA for ICH
 – CIN 6% (contrast not risk factor in multi-variate analysis), 2.6% significant renal impairment vs 1.4% control (p=0.3)4
 • N=2034 for outpatient PCT 66 (3%) sCR
 – 94% history of renal disease- 2 (0.1%) no risk factors5
 • N=640 ER presentation 35 (5.5%) sCR
 – 75% risk factors for renal insufficiency- 8 (1.3%) no risk factors6
 • N=241 All CTA (x=139cc) prior to blood results available
 – 24% CTA and 22% control pts abn delayed baseline CR
 – CIN 3% CTA vs 4% control7

• CIN <5% (closer to 2-3%)
• CIN Misnomer- contrast not needed

Guidelines for ER patients

• **CAR¹:**
 - Evaluate risk factors. If absent no risk for renal failure ²,³
 - Risk factors present
 - Known renal impairment/single kidney
 - Diabetes, age>70, sepsis/hypotension
 - Dehydration/ organ transplantation/ chemotherapy
 - Cardiovascular disease (HT, CHD, PVD, CAD)
 - Consider
 - Visipaque (iso-osmolar): Class B data
 - Assess hydration: 300-500ml crystalloid bolus
 - Stop Metformin resume once renal function known and normal

• **ACR⁴:**
 - Risk of CIN is not an absolute but a relative (and often weak relative) contraindication to contrast.

• **ESUR⁵:**
 - Emergent situation waive Cr measurement
 - If procedure deferrable with no harm to pt- get Cr

CT limitations-2

Spatial coverage

Table toggle

320 slice scanner- whole brain coverage

MRI limitations

Scan Environment

Contraindications 10%

Access/ Speed

Nephrogenic Systemic fibrosis

Described 2000

Gadolinium and impaired renal function

Skin thickening/ brawny pigmentation

Extremity fibrosis

Nearly all organs involved

1) Lancet 2000;356:1000
Emerging Applications
Prediction of hematoma expansion in ICH

• NCCT Sensitivity 77%, Specificity 84% for predicting underlying cause

• AHA guidelines limitations

• Risk of structural lesion in ICH is between 2-3% Basal Ganglia and up to 11% in all locations

Dural fistula Vascular malformation Sinus thrombosis

NCCT CTA
CTA detection of secondary ICH

- Retrospective series
- N=623; ≤24hrs;
 - 91/623 (15%)
 - CTA Sens 96%; Spec 99; Accuracy 98%
- N=78; 49±14yrs;
 - 22/78 (28%)
 - CTA Sens 96%; Spec 100; Accuracy 99%
- N=44;
 - 24/44 (54%)
 - CTA Sens 92%; Spec 92; Accuracy 92%
 - Kappa 0.81-0.91
- N=43; ER attendance <40yrs;
 - 27/43 (63%)
 - CTA Sens 96%; Spec 100; Accuracy 98%

Sensitivity 92-96%; Specificity 92-100%; Accuracy 92-98%

CTA Spot Sign Definition

- Single or multiple, serpiginous or spot-like foci of contrast density
- Normal NCCT
- No visible communication outside hematoma
- Density ~2* greater than hematoma

Wada Stroke 2007;38:1257
CTA Spot Sign Definition

- Single or multiple, serpiginous or spot-like foci of contrast density

Appearance of contrast extravasation differs according to scan orientation.

Wada Stroke 2007;38:1257
CTA Spot Sign Definition

• Single or multiple, serpiginous or spot-like foci of contrast density

Appearance of contrast extravasation differs according to scan orientation.

Wada Stroke 2007;38:1257
CTA Spot Sign Definition

- Single or multiple, serpiginous or spot-like foci of contrast density

Axial CTA
Appearance of contrast extravasation differs according to scan orientation.

Coronal CTA Reformat
Wada Stroke 2007;38:1257
CTA Spot Sign Performance

- N=39; <6 hrs
 - 33% Spot positive
 - Sens 91%, Spec 89%; PPV 77%, NPV 96%
 - Predictor hematoma expansion

- N=104; <48 hrs; retrospective
 - 56% Extravasation positive
 - Sens 93%, Spec 50%; PPV 24%, NPV 98%
 - Predictor hematoma expansion

- N=56; median 13 hrs; retrospective
 - 18-23% Extravasation positive
 - Predictor hematoma expansion and mortality

- N=573; retrospective
 - Sens 88%, Spec 93%; PPV 69%, NPV 98%
 - Predictor of hematoma expansion and poor outcome

Sens 99-93%, Spec 89-93%, NPV 96-98%, PPV 69-77%

CTA Spot Sign Definition

<table>
<thead>
<tr>
<th>Spot Sign Characteristic*</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of spot signs</td>
<td></td>
</tr>
<tr>
<td>1–2</td>
<td>1</td>
</tr>
<tr>
<td>≥3</td>
<td>2</td>
</tr>
<tr>
<td>Maximum axial dimension</td>
<td></td>
</tr>
<tr>
<td>1–4 mm</td>
<td>0</td>
</tr>
<tr>
<td>≥5 mm</td>
<td>1</td>
</tr>
<tr>
<td>Maximum attenuation</td>
<td></td>
</tr>
<tr>
<td>120–179 HU</td>
<td>0</td>
</tr>
<tr>
<td>≥180 HU</td>
<td>1</td>
</tr>
</tbody>
</table>

Where multiple Spots are present choose highest attenuation and largest dimension
CTA Spot Sign Definition

- Where multiple Spots are present choose highest attenuation and largest dimension
- Score requires refinement/ validation prospectively

www.spotlightstudy.com

Elements of Danger — The Case of Medical Imaging
Michael S. Lauer, M.D.

Is Computed Tomography Safe?
Rebecca Smith-Bindman, M.D.

July 31, 2010
After Stroke Scans, Patients Face Serious Health Risks
By WALT BOGDANICH

The New York Times
CT dose reduction

• Filtered back projection
 – Low dose, increased noise

• Adaptive statistical iterative reconstruction (ASIR-GE)
 – Iteratively compares obtained to ideal value, transforming obtained value each time
 – May be combined other techniques such as principle component analysis (PCA)
 – Allows identification & subtraction of noise

 • Applications
 – Obese patients
 – Low dose studies: Renal calculus, CT colonography, CTA incl coronary
Conventional dose
190 mA; 4.9mSv

Low dose
50 mA; 0.5mSv
No ASIR

Low Dose
50 mA; 0.5mSv
ASIR
High Dose 190 mA Low Dose 50 mA Low Dose with Noise Suppression

Blood Flow

Blood Volume
Conclusion

- Stroke detection
- Typical scan protocols
- Methods of stroke detection
 - Limitations
 - Renal impairment
- Developments in imaging of Intracranial Hemorrhage
 - CTA detection of causes of secondary ICH detection
 - Spot Sign
- CT dose and dose reduction strategies
Acknowledgements

• Collaborators
 – Neurology and Neuroradiology groups Sunnybrook Hospital
 – Professor Ting Lee; Lawson Research Institute
 – Research team

Thank you. Any Questions?