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Purpose: To develop an approach for automated quantification of myocardial infarct 
heterogeneity in late gadolinium enhancement (LGE) cardiac MRI.
Methods: We acquired 2D short-axis cine and 3D LGE in 10 pigs with myocardial 
infarct. The 2D cine myocardium was segmented and registered to the LGE im-
ages. LGE image signal intensities within the warped cine myocardium masks were 
analyzed to determine the thresholds of infarct core (IC) and gray zone (GZ) for the 
standard-deviation (SD) and full-width-at-halfmaximum (FWHM) methods. The ini-
tial IC, GZ, and IC + GZ segmentations were postprocessed using a normalized cut 
approach. Cine segmentation and cine-LGE registration accuracies were evaluated 
using dice similarity coefficient and average symmetric surface distance. Automated 
IC, GZ, and IC + GZ volumes were compared with manual results using Pearson cor-
relation coefficient (r), Bland-Altman analyses, and intraclass correlation coefficient.
Results: For n = 87 slices containing scar, we achieved cine segmentation dice simi-
larity coefficient = 0.87 ± 0.12, average symmetric surface distance = 0.94 ± 0.74 
mm (epicardium), and 1.03 ± 0.82 mm (endocardium) in the scar region. For cine-
LGE registration, dice similarity coefficient was 0.90 ± 0.06 and average symmetric 
surface distance was 0.72 ± 0.39 mm (epicardium) and 0.86 ± 0.53 mm (endocar-
dium) in the scar region. For both SD and FWHM methods, automated IC, GZ, and 
IC + GZ volumes were strongly (r > 0.70) correlated with manual measurements, 
and the correlations were not significantly different from interobserver correlations 
(P > .05). The agreement between automated and manual scar volumes (intraclass 
correlation coefficient = 0.85-0.96) was similar to that between two observers (intra-
class correlation coefficient = 0.81-0.99); automated scar segmentation errors were 
not significantly different from interobserver segmentation differences (P > .05).
Conclusions: Our approach provides fully automated cine-LGE MRI registration 
and LGE myocardial infarct heterogeneity quantification in preclinical studies.
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1  |   INTRODUCTION

Myocardial infarction (MI) due to prolonged ischemia in 
the heart leads to the development of myocardial scarring, 
a hallmark feature of coronary artery disease. Scar-related 
ventricular tachycardia is a particularly dangerous cardiac 
arrhythmia and represents a leading cause of sudden cardiac 
death (SCD).1,2 Implantable cardioverter defibrillator (ICD) 
therapy can effectively terminate ~90% of life-threatening 
ventricular tachycardia episodes3 and reduce overall mor-
tality by ~40% in 1 year.4 Current guidelines for identifying 
candidates for ICD therapies to prevent SCD rely on left 
ventricle ejection fraction <35% as the primary criterion.5 
However, this measure fails to identify one-third of SCD 
cases,6 and in patients who are identified based on this cri-
terion, the average annual rate of appropriate ICD firing is 
only ~5%.7 Accordingly, there is an urgent need for better risk 
stratification to select candidates who would benefit the most 
from ICD therapies.

Post-MI, the damaged heart muscle undergoes structural 
and functional remodeling that creates heterogeneous fibrosis 
in the infarcted area,8,9 which can form the arrhythmogenic 
substrates that are responsible for ventricular tachycardia and 
SCD events.9,10 Late gadolinium enhancement (LGE) MRI 
has been established as the clinical standard for evaluating 
myocardial tissue composition, including MI.11 Using LGE 
MRI, MI can be characterized as regions of dense fibrosis 
(infarct core [IC]) and regions with a mixture of viable myo-
cytes and collagen strands (gray zone [GZ]).12,13 Numerous 
investigations have demonstrated the prognostic value of 
LGE-derived biomarkers for cardiac structural and func-
tional abnormality phenotyping and SCD risk stratification. 
In particular, the extent of GZ, independent of other clini-
cal- and MRI-derived variables, is strongly associated with 
ventricular tachycardia inducibility, ICD events, and cardiac 
mortality.12,14-16

Quantification of MI heterogeneity (ie, IC, GZ, and 
healthy myocardium) is crucial for integrating LGE MRI 
for SCD risk stratification and efficacious patient selection 
for ICD therapies. Accordingly, a number of algorithms 
have been developed for MI heterogeneity quantification 
in LGE images, including standard-deviation (SD); full-
width-at-half-maximum (FWHM); clustering; model fitting; 
graph cut/continuous max-flow; and recently, deep learning 
methods for direct scar quantification, as previously summa-
rized.17,18 SD and FWHM-based methods remain the most 
widely used15,19,20 because of the clinically significant pre-
dictors of mortality they provide. Although effective and 
straightforward to implement, SD and FWHM-based meth-
ods are limited by a number of factors that hamper efficient 
clinical workflow. Current implementations mainly use LGE 
images and require: 1) manual segmentation of endocardial 
and epicardial contours to obtain the myocardial volume, and 

2) manual delineation of a remote myocardial region as the 
reference for the SD and FWHM methods and of a hyperen-
hanced region for the FWHM method. In addition, substan-
tial manual corrections are often required to identify regions 
of microvascular obstruction within scar and to remove blood 
pool and pericardial partial volume artifacts. These tedious 
and time-consuming user interactions introduce substantial 
user variability and are not compatible with efficient clini-
cal workflow. These issues become more prominent because 
high-resolution 3D LGE is increasingly used in characteriz-
ing MI in recognition of the fact that scar quantification is 
dependent on image resolution.21,22 Furthermore, the popu-
lation of potential individuals with prior infarct is growing 
due to improved preventative patient care and survival after 
acute MI,2 which increases clinical workload and necessitates 
high-throughput workflows.

MRI protocols using cine acquisitions provide high-res-
olution, multidimensional visualization of cardiac structural 
and functional abnormalities with excellent soft tissue con-
trast.23 Here, we proposed to employ the myocardial struc-
tural information provided by cine MRI to facilitate LGE 
MI heterogeneity quantification. In particular, our objective 
was to develop a way to fully automate the existing SD and 
FWHM methods for rapid and reproducible MI heterogene-
ity quantification. This work represents an important step 
toward clinical studies of fully automated analysis of LGE 
MRI.

2  |   METHODS

2.1  |  Animal preparation

We evaluated 10 Yorkshire swine (20-25 kg, University 
of Guelph, Guelph, Canada) in accordance with the study 
protocols approved by The Animal Care Committee of 
Sunnybrook Health Sciences Centre. Animals were sedated 
through intramuscular injection of ketamine (30 mg/kg) and 
atropine (0.05 mg/kg) and were maintained at a surgical stage 
of anesthesia by continuously delivering isoflurane gas (1%-
5%) via mechanical ventilation (20-25 breaths/min). A bolus 
of amiodarone (50 mg/mL) and lidocaine (30 mL of 2% li-
docaine in 250 mL of saline, as needed) was administered to 
mitigate arrhythmia, as previously described.13,24 Following 
catheterization, the left anterior descending artery was oc-
cluded distal to second diagonal branch using an inflated 
balloon dilation catheter (Sprinter Legend Balloon Catheter, 
Medtronic, Minneapolis, MN) for ∼90 min. Blood flow was 
restored and then confirmed using X-ray fluoroscopy (OEC 
9800, GE Healthcare, Milwaukee, WI) within 5 min of bal-
loon deflation and retraction.25 The animals were recovered 
from anesthesia and allowed to heal for 5~6 weeks to create 
heterogeneous infarct.
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2.2  |  Image acquisition

MR imaging was performed on a 3 Tesla scanner (MR 750, 
General Electric Healthcare, Milwaukee, WI) with a 16-chan-
nel anterior cardiac coil array, as previously described.24 
For cine MRI, 2D short-axis slices covering the ventricu-
lar chambers were acquired using a respiratory-gated bal-
anced SSFP sequence (repetition time/echo time/flip angle 
= 4.0 ms/1.8 ms/45º, field-of-view = 24-30 × 24-30 cm2, 
matrix size = 256 × 256, slice thickness = 5-6 mm, num-
ber of slices = 13-20, number of phases = 20, views per 
segment = 8, number of excitations = 1, bandwidth = 125 
KHz). 3D LGE was performed ~10-15 min following injec-
tion of gadolinium-DPTA (0.2 mmol/kg, Magnevist, Berlex 
Inc.,Wayne, NJ) using an inversion recovery fast gradient 
echo sequence with respiratory navigation (repetition time/
echo time/flip angle = 3.7 ms/1.6 ms/15º, field-of-view= 
24-30 × 24-30 × 6-10 cm3, matrix size = 256 × 256 × 40-
140, bandwidth = 31.25 KHz).

2.3  |  Image analysis and MI heterogeneity 
quantification

Figure 1 provides a schematic of the fully automated algo-
rithm workflow that integrated cine myocardial segmenta-
tion, cine-LGE registration, and LGE scar quantification.

Cine myocardium segmentation was performed using a 
widely used U-net26 that was trained on 20 stacks of 2D cine 
images from a separate group of 10 pigs scanned using the 
same MR system with the same MR protocols (this dataset 
was not used for algorithm performance evaluation). The 
myocardium was segmented in each of the 20 stacks of cine 
images using CVI-42 v4.1.8 software (Circle Cardiovascular 

Imaging, Calgary, Alberta, Canada) to train the U-net in 2D: 
number of levels = 5, number of features in the first level = 
16, number of epochs = 200, number of updates per epoch 
= 100, batch size = 15, optimizer = Adam, learning rate = 
0.0001, loss function = cross entropy. Data augmentation, 
including random rotation (−60~60 degrees), translation 
(−30~30 pixels), resizing (0.8~1.2 times), and intensity scal-
ing (0.8~1.2 times), as well as Monte Carlo dropout (drop-
out rate = 0.5) during training and testing, were performed 
to improve the robustness and minimize overfitting of U-net 
training. The automated myocardial infarct quantification al-
gorithm was implemented in 3 steps as follows:

Step 1: The target cine images (slice thickness = 5-6 
mm) at approximately end diastole were interpolated in 
the through-plane direction to approximately isotropic 
voxel sizes. The trained U-net model was applied to the 
interpolated cine data to generate 50 Monte Carlo dropout 
predictions for each interpolated cine volume, which were 
combined to obtain a single segmentation using a simulta-
neous truth and performance level estimation algorithm.27

Step 2: The interpolated cine images were registered to 
the 3D LGE data using an affine registration algorithm 
that employed block matching.28 The affine registration 
results were refined using a deformable registration step 
that utilized a modality independent neighbor descriptor 
for cine-LGE image similarity measurements and B-spline 
free-form deformation for regularization.29 The resulting 
deformation field was used to warp the cine myocardium 
masks provided by the U-net (step 1) into the 3D LGE 
space.
Step 3: The warped cine myocardium masks were used 
to restrict the LGE MI heterogeneity analysis, which was 
implemented in 3 substeps as follows:

F I G U R E  1   Schematic for our automated algorithm pipeline. 2D cine stacks and 3D LGE MR images were inputs to the pipeline. Step 1: 
The original 2D cine images were interpolated to approximately isotropic voxel sizes, and the myocardium was segmented using a U-net. Step 2: 
The interpolated cine was registered to the 3D LGE, and the resulting deformation field was used to warp the cine myocardium masks derived in 
step 1. Step 3: The warped cine myocardium masks were used to characterize MI heterogeneity based on the SD and FWHM methods. LGE, late 
gadolinium enhancement; MI, myocardial infarction
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Step 3a: LGE image signal intensities within the warped 
cine myocardium masks were clustered into 3 classes using 
a k-means clustering approach. The cluster with the lowest 
signal intensities was used as the initial remote region.
Step 3b: The initial remote region in step 3a was postpro-
cessed by keeping the largest connected component, which 
was used as the remote region for the SD and FWHM 
methods. For the SD-based method, the mean (meanrmt) 
and SD (stdrmt) of the signal intensities in the refined re-
mote region were used to determine the thresholds (T) 
of GZ and IC,15 that is, TSD

GZ
=meanrmt+2∗ stdrmt and 

TSD
IC

=meanrmt+5∗ stdrmt For the FWHM method, the max-
imal signal intensities in the refined remote region and the 
warped cine myocardial mask were used to determine the 
thresholds (T) of GZ and IC,12 that is, TFWHM

GZ
=maxrmt and 

TFWHM
IC

=0.5∗maxmyo, where maxrmt and maxmyo represent 
the maximal signal intensities in the refined remote region 
and the entire myocardium, respectively. The 2 thresholds 
were used to identify the initial IC, GZ, and healthy myo-
cardium regions for each quantification method. This step 
was used to eliminate the need for manual selection of a 
remote region for the SD and FWHM methods.
Step 3c: The initial IC, GZ, and healthy myocardium 
regions were postprocessed using a normalized cut ap-
proach30 to correct the segmentation errors. In particular, 
the initial IC and GZ clusters were merged as a single 
region whereby the largest connected component and 
the remainder were temporarily labeled as “1” and “0,” 
respectively. The X-Y coordinates of the pixels in the 
merged region were used to generate image features in 
the form of f (x)={X (x) , Y(x)}, where X (x) and Y (x) rep-
resent the X-Y coordinates of pixel x. The normalized cut 
approach was formulated as: NC (S)=−

STAS

1AS
, where A is 

a matrix that encodes the similarity between image fea-
tures f (x) at any 2 pixels, and S represents the segmen-
tation. The normalized cut model was efficiently solved 
through upper-bound linearization.31,32 Upon algorithm 
convergence and within the merged IC and GZ region, 
the pixels labeled “0” were combined with the initial 
healthy myocardium in step 3b, and the pixels labeled 
“1” were assigned the original IC and GZ labels in step 
3b. This step was used to effectively reduce manual cor-
rections of initial suboptimal MI quantification results 
provided by both the manual and automated algorithms.

2.4  |  Algorithm validation

Algorithm performance was evaluated for cine myocar-
dium segmentation, cine-LGE registration, and automated 
LGE MI heterogeneity quantification. In particular, cine 
myocardium segmentation and cine-LGE registration were 
evaluated both globally for the entire myocardium and 

regionally for the region containing scar, as illustrated in 
Supporting Information Figure S1. Cine myocardium seg-
mentation accuracies were determined using dice similarity 
coefficient (DSC) and average symmetric surface-distance 
(ASSD)32 between the U-net and manual cine myocardium 
masks. Cine-LGE registration accuracy was quantified by 
comparing the warped cine manual masks and the LGE 
myocardium manual segmentation using DSC and ASSD 
to only evaluate the effects of the registrations, as previ-
ously suggested.33,34 Note that cine and LGE myocardium 
manual segmentations were used for cine-LGE registration 
accuracy evaluation, whereas cine myocardium U-net seg-
mentation was used for LGE MI heterogeneous analysis in 
section 2.3 steps 2-3. Cine and LGE myocardium manual 
segmentation were performed by a single observer (F.G., 
with 2.5 years’ experience in cardiac MRI manual segmen-
tation) at least 2 months apart; and the manual masks were 
independently reviewed, corrected, and approved by 2 ex-
perts each with more than 10 years’ experience in cardiac 
MRI segmentation. LGE myocardium manual segmenta-
tion was performed twice separated by 1 month, and the 2 
sets of manual segmentation were merged using a simulta-
neous truth and performance level estimation algorithm for 
cine-LGE registration accuracy evaluation.

To characterize intra- and interobserver manual segmenta-
tion performance, 2 observers (F.G. and T.E.) manually selected 
a remote region within the LGE following the previous guide-
lines12,19 3 times on 3 different days. The 2 LGE myocardium 
manual segmentations and the 3 manual remote regions were 
used to generate 6 sets of manual LGE MI heterogeneity results 
using the SD and FWHM methods for each observer (F.G. and 
T.E.). The 12 sets of manual IC, GZ, and IC + GZ volumes 
were averaged and compared with automated algorithm mea-
surements for the SD and FWHM methods. Similarly, the IC, 
GZ, and IC + GZ volumes in the 6 sets of manual results were 
averaged for each observer (F.G. and T.E.), and the 2 observ-
ers’ measurements were compared. The absolute differences of 
automated versus manual (DiffAut-Man) and F.G. versus T.E.'s 
manual (DiffMan-Man) segmentation volumes were calculated 
for each slice. Both the initial manual and initial automated 
results were “noisy” and were postprocessed using the normal-
ized cut algorithm in step 3 in section 2.3.

2.5  |  Statistical analysis

Pearson correlation coefficients (r), Bland-Altman analyses, 
and paired t tests were used to determine the relationships of 
IC, GZ, and IC + GZ volumes provided by the automated 
and manual methods. Correlation coefficients (r) were com-
pared using Fisher r-to-z transformations.35 The intraclass 
correlation coefficient (ICC) was used to measure the abso-
lute agreement between automated and manual scar volumes 
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as well as multi-observer repeated manual segmentation. In 
addition, DiffAut-Man and DiffMan-Man were compared for IC, 
GZ, and IC + GZ using paired t tests. Normality of data dis-
tribution was determined using Shapiro-Wilk tests, and when 
significant, nonparametric tests were performed. The statisti-
cal analyses were performed using Statistical Package for the 
Social Science (SPSS) version 23 (SPSS Inc., Chicago, IL). 
Results were considered significant when the probability of 
making a type I error was less than 5% (P < .05).

3  |   RESULTS

Figure 2 shows representative results of cine myocardium 
segmentation using a U-net and cine-LGE registration using 
an affine and a deformable registration method.

Table 1 provides the cine myocardium segmentation and 
cine-LGE registration accuracies for n = 87 slices containing 
scar from 10 pigs. For segmentation of the entire myocar-
dium, we achieved mean DSC of 0.879 ± 0.097, ASSD of 
0.91 ± 0.51 mm for the epicardium, and 0.93 ± 0.56 mm for 
the endocardium. When restricting the analysis to the scar 

region, we obtained a slightly lower DSC of 0.865 ± 0.119 
and higher ASSD of 1.03 ± 0.82 mm for the epicardium, with 
very similar ASSD of 0.94 ± 0.74 for the endocardium. For 
cine-LGE registration, we observed a mean DSC of 0.913 ± 
0.050, ASSD of 0.71 ± 0.33 mm for the epicardium, and 0.79 
± 0.41 mm for the endocardium by comparing cine and LGE 
myocardium manual segmentation. Similarly, we observed a 
slightly lower DSC of 0.901 ± 0.064 and higher ASSD of 
0.86 ± 0.53 mm for the endocardium, whereas the ASSD of 
the epicardium was very similar when comparing the analysis 
restricted to the scar region versus for the entire myocardium. 
In addition, we compared cine U-net myocardium segmenta-
tion and LGE manual myocardium segmentation after cine-
LGE registration (automated LGE MI analysis in Table 1). 
For the entire endocardium, we observed DSC of 0.859 ± 
0.105 and ASSD of 1.04 ± 0.54 mm for the epicardium and 
1.09 ± 0.55 mm for the endocardium; for the scar region, 
DSC was 0.832 ± 0.124, and ASSD was 1.16 ± 0.82 mm for 
the epicardium and 1.28 ± 0.78 mm for the endocardium.

Figure 3 provides examples of LGE MI heterogeneity 
quantification results generated using the automated algorithm 
and the manual segmentation based on the SD method. For 

F I G U R E  2   Representative 
myocardium segmentation delineated and 
overlaid on LGE images in grayscale. 
Basal to apical LGE slices are shown from 
upper left to lower right. Purple contours 
denote the warped cine myocardium masks 
generated using the U-net after algorithm 
step 2 and step 3. Dashed green contours 
represent manual segmentations of LGE 
myocardium

Steps Region DSC ([0,1])
ASSD Epic. 
(mm)

ASSD Endo. 
(mm)

Cine segmentation Entire myo. 0.879 ± 0.097 0.91 ± 0.51 0.93 ± 0.56

Scar region 0.865 ± 0.119 0.94 ± 0.74 1.03 ± 0.82

Cine-LGE 
registration

Entire myo. 0.913 ± 0.050 0.71 ± 0.33 0.79 ± 0.41

Scar region 0.901 ± 0.064 0.72 ± 0.39 0.86 ± 0.53

Automated LGE 
MRI Analysis

Entire myo. 0.859 ± 0.105 1.04 ± 0.54 1.09 ± 0.55

Scar region 0.832 ± 0.124 1.16 ± 0.82 1.28 ± 0.78

Cine segmentation accuracies were determined by comparing U-net and manual myocardium segmentations. 
Cine-LGE registration accuracies were evaluated by comparing the warped cine manual myocardium masks 
and LGE manual myocardium segmentations to only evaluate the effects of the registration methods. For 
automated LGE MI heterogeneity throughout the study, cine myocardium U-net segmentation was used.
ASSD endo., average symmetric surface-distance for the endocardial contours; ASSD epic, average symmetric 
surface-distance for the epicardial contours; DSC, dice similarity coefficient; entire myo., entire myocardium; 
LGE, late gadolinium enhancement.

T A B L E  1   Cine myocardium 
segmentation and cine-LGE registration 
accuracies (mean ± SD) for n = 87 slices 
from 10 pigs
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the 3 LGE images, the initial manual and automated segmen-
tations were “noisy,” and there were substantial false positives 
in the myocardium that were likely healthy. However, these 
issues were greatly improved using the normalized cut post-
processing (step 3c in Methods) that takes into consideration 
the relationships of the coordinates of the IC and GZ pixels. 
To provide an example, the initial automated IC and GZ re-
gions (the second row in Figure 3C) are scattered across the 
myocardium; the IC and GZ pixels opposite to and far from the 
scar volume in the LGE (row 1 in Figure 3C-D) are very likely 
false positives, which need to be corrected. Based on this ob-
servation, we designed image features combining IC/GZ pixel 
location information to filter the scattered false positives and 
assign these pixels to healthy myocardium. Similarly, the au-
tomated and manual MI heterogeneity analysis results of the 3 
LGE slices using the FWHM method were problematic, and, 
as shown in Figure 4, the initial results were much improved 
using the normalized cut postprocessing (step 3c in Methods). 
These results suggest that the normalized cut postprocessing 
component is effective in improving both manual and auto-
mated myocardial scar characterization.

Figure 5 shows the relationships and agreements for au-
tomated versus manual and F.G. versus T.E.'s manual IC, 
GZ, and IC + GZ volumes using the SD-based scar quanti-
tation method. As shown in Figure 5 and Table 2, automated 
IC, GZ, and IC + GZ volumes were strongly and signifi-
cantly (all Pearson r > 0.85, P < .0001) correlated with the 
mean of the 12 sets of manual segmentation generated by 2 

observers. The corresponding correlations (r) between auto-
mated and manual scar analysis results were similar and not 
significantly different (Fisher r-to-z transforms P = .13 for 
IC, 0.08 for GZ, and 0.13 for IC + GZ) from interobserver 
correlations. As shown in Figure 5, the automated algorithm 
yielded systematically greater IC, GZ, and IC + GZ volumes 
with biases of 0.03 mL, 0.04 mL, and 0.07 mL, respectively. 
Comparisons of the mean of the 6 sets of manual measure-
ments generated by F.G. and T.E. showed systematic biases 
of 0.05 mL, 0.01 mL, and 0.06 mL for IC, GZ, and IC + GZ, 
respectively.

Figure 6 similarly shows the correlations and agreements 
between automated versus manual and F.G. versus T.E.'s man-
ual MI heterogeneity measurements using the FWHM method. 
Figure 6 and Table 2 show that the IC volumes provided by the 
2 observers were strongly and significantly correlated (Pearson 
r = 0.99, P < .0001), and the correlation was significantly dif-
ferent (Fisher z-score = 0.00) from the correlation of the auto-
mated and manual IC volumes (Pearson r = 0.85, P < .0001). 
The Bland-Altman bias of the IC volumes for the 2 observers 
(bias = 0.00 mL) was lower than that between the automated vs 
manual measurements by the 2 observers (bias = −0.02 mL). 
For GZ and IC + GZ, the correlations of automated and man-
ual volumes were not significantly different from interobserver 
correlations (Fisher z-scores = 0.50 for GZ and 0.23 for IC + 
GZ) and the Bland-Altman biases (0.03 mL for GZ, 0.01 mL for 
IC + GZ) were lower than F.G. versus T.E.'s manual outcomes 
(0.11 mL for GZ and 0.11 mL for IC + GZ).

F I G U R E  3   LGE MI heterogeneity 
quantification results provided by automated 
and manual segmentation using the SD 
method. A) Initial and B) final IC and 
GZ maps for an LGE slice at the base. C) 
Initial and D) final IC and GZ maps for 
an LGE slice at the mid-cavity. E) Initial 
and F) final IC and GZ maps for an LGE 
slice at the apex. The first row represents 3 
basal-to-apical LGE slices; the second row 
shows automated algorithm segmentation; 
and the third to fifth rows correspond to 
3 sets of manual results generated by 2 
observers. Red: IC; green: GZ; blue: healthy 
myocardium. IC, infarct core; GZ, gray zone
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F I G U R E  4   LGE MI heterogeneity 
quantification results provided by automated 
and manual segmentation using the FWHM 
method. A) Initial and B) final IC and GZ 
maps for an LGE slice at the base. C) Initial 
and D) final IC and GZ maps for an LGE 
slice at the midcavity. E) Initial and F) final 
IC and GZ maps for an LGE slice at the 
apex. The first row represents 3 basal-to-
apical LGE slices; the second row shows 
automated algorithm segmentation; the third 
to fifth rows correspond to 3 sets of manual 
results generated by 2 observers. Red: IC; 
green: GZ; blue: healthy myocardium
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F I G U R E  5   Relationships and agreement of automated (VAut) and manual (VMan) as well as F.G. and T.E.'s manual IC, GZ, and IC + GZ 
volumes (n = 87 slices) using the SD method. Top row: Linear regression of automated and the mean of the 12 sets (6 sets for each manual 
observer) of manual IC, GZ, and IC + GZ volumes (black), and the mean of the 6 sets of manual results for F.G. and T.E. (gray). Bottom row: 
Bland-Altman plots of agreement for automated and manually generated (mean of the 12 sets of results for 2 manual observers) IC, GZ, and IC + 
GZ volumes (black), and the mean of the manual measurements provided by F.G. and T.E.(gray). Solid line indicates the biases, and dotted lines 
represent the 95% limits of agreement. VAut, automated volume; VMan, manual volume
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The agreement between automated and manual segmenta-
tion as well as interobserver repeated manual segmentation is 
shown in Table 3. For the SD-based method, the agreement 
of automated and manual segmentation (ICC ≈ 0.94-0.96) 
was similar and comparable to repeated manual quantifica-
tion provided by 2 observers (ICC≈0.95). For the FWHM-
based method, ICC for automated and manual volumes 
was lower for IC (ICC = 0.96 vs. 0.995) and higher for GZ 
(ICC = 0.85 vs. 0.81) and IC + GZ (ICC = 0.89 vs. 0.88) 
compared with the interobserver agreement. Supporting 
Information Figure S2 compares the volumes of IC, GZ, and 
IC + GZ generated by the automated algorithm and multi-
observer manual segmentation. For n = 87, LGE slices from 
10 pigs, the differences between automated and manual scar 

Correlations (r) SD Method FWHM Method

Tissues
Aut. vs. 
Man.

F.G. vs. 
T.E.'s 
Man.

Fisher 
z

Aut. vs. 
Man.

F. G. vs. 
T.E.'s 
Man.

Fisher 
z

IC 0.86 0.91 0.13 0.85 0.99 0.00

GZ 0.85 0.91 0.08 0.70 0.75 0.50

IC + GZ 0.89 0.93 0.13 0.75 0.82 0.23

Aut.: automated algorithm segmentation; GZ, gray zone; IC, infarct core; Man.: manual segmentation.

T A B L E  2   Pearson correlations (r) for 
Aut. vs. Man. and F.G vs T.E.'s manual IC, 
GZ, and IC + GZ volumes for n = 87 slices 
from 10 pigs. Fisher z-transformation was 
used to compare the correlation coefficients

F I G U R E  6   Relationships and agreement of automated (VAut) and manual (VMan) as well as F.G. and T.E.'s manual IC, GZ, and IC + GZ 
volumes (n = 87 slices) using the FWHM method. Top row: Linear regression of automated and the mean of the 12 sets (6 sets for each manual 
observer) of manual IC, GZ, and IC + GZ volumes (black), and the mean of the 6 sets of manual results for F.G. and T.E.(gray). Bottom row: 
Bland-Altman plots of agreement for automated and manually generated (mean of the 12 sets of results for 2 manual observers) IC, GZ, and IC + 
GZ volumes (black), and the mean of the manual measurements provided by F.G. and T.E. (gray). Solid line indicates the biases, and dotted lines 
represent the 95% limits of agreement
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T A B L E  3   Reproducibility of automated and manual MI 
heterogeneity quantification

ICC ([0,1]) SD method FWHM method

Tissues

Aut. 
vs. 
Man.

F.G. vs. 
T.E.'s Man.

Aut. 
vs. 
Man.

F.G. vs. 
T.E.'s Man.

IC 0.943 0.946 0.960 0.995

GZ 0.938 0.945 0.848 0.811

IC + GZ 0.958 0.952 0.892 0.876

Aut.: Automated algorithm segmentation, ICC, intraclass correlation coefficient; 
Man.: manual segmentation.
Man. vs Man.: Manual MI heterogeneity quantification generated by F.G. and 
T.E.
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volumes (Supporting Information Figure S2A) were similar 
and within the range of interobserver repeated manual seg-
mentations (Supporting Information Figure S2B). As shown 
in Table 4, the differences between automated versus manual 
segmentation volumes were not significantly different (P > 
.05) from the differences between the 2 manual observers ex-
cept for GZ using the SD-based method (P = .004) and IC 
using the FWHM method (P < .0001).

Our approach required approximately 4 h for U-net train-
ing, 5 s for generating 50 myocardium segmentation samples 
in interpolated cine; 1.5 min and 1.0 min for cine-LGE affine 
and deformable registration, respectively; and 0.2 s per slice 
for LGE MI heterogeneity quantification, resulting in total 
runtime of ~5 min per dataset.

4  |   DISCUSSION

Cardiac MRI-based measurements of MI heterogeneity pro-
vide a way to stratify the risk for cardiac arrhythmias, identify 
candidates for appropriate ICD therapies, and advance effica-
cious cardiac interventions. In this proof-of-concept study, 
we developed and evaluated a fully automated approach for 
cine and 3D LGE registration and MI heterogeneity quanti-
fication. We explored a preclinical dataset of 10 pigs with 
prior myocardial infarction and made some important obser-
vations, including: 1) excellent cine myocardium segmenta-
tion and cine-LGE registration accuracies for both the entire 
myocardium and the infarct area; 2) promising IC and GZ 
volume measurement performance on par with interobserver 
manual analysis; and, 3) computational efficiency consistent 
with efficient research and clinical workflows.

First, we achieved excellent cine myocardium segmenta-
tion and cine-LGE registration accuracy. LGE provides vi-
sualization of heart tissue viability, and quantification of MI 
heterogeneity requires identification of myocardial contours. 
However, direct segmentation of the myocardium in LGE is 
challenging because the contrast between the myocardium 
and surrounding tissues (eg, blood) is dependent on the se-
lection of inversion time, physiological conditions, noise, 
and coil factors during image acquisition.36 Recent studies 
using deep-learning techniques proposed to directly quan-
tify MI heterogeneity in LGE through regression without 

myocardium segmentation17; other studies synthesized LGE-
like images37 from noncontrast enhanced anatomical cardiac 
MRI with reduced demands for LGE myocardium contour-
ing. Although promising, these methods required large data-
sets and intensive efforts for image annotation for algorithm 
training (regression methods require dense annotations to 
generate sparse quantitative measurements), and concerns 
about algorithm transparency and interpretability remain. To 
address this issue, we proposed to incorporate the excellent 
anatomical structural information provided by cine images 
and to register cine to LGE. For cine segmentation, we em-
ployed a standard U-net that has been widely used for various 
medical image segmentation tasks without introducing extra 
ambiguity in our algorithm. The segmentation DSC of 0.879 
and ASSD of 0.91 to 0.93 mm for the entire cine myocardium 
are comparable to manual segmentation performance in the 
literature.38,39 In the scar region, the slightly lower DSC of 
0.865 and greater ASSD of 0.94 to 1.03 mm are likely a re-
sult of the thinned myocardial wall and reduced myocardial 
volume due to scarring, which increase the difficulty for both 
automated and manual segmentation. Similarly, we achieved 
cine-LGE registration DSC of 0.913 and ASSD of 0.71 to 
0.79 mm for the entire myocardium with slightly lower DSC 
of 0.901 and ASSD of 0.72-0.86 mm around the scar region. 
The DSC and ASSD metrics suggest excellent alignment of 
the 2 images. We used cine at approximately the end-dias-
tole ±2 phases and noticed that the selection of cine phase 
did not affect the cine-LGE registrations too much because 
of the demonstrated robustness of the affine and deformable 
registration methods. We note that our approach is highly 
dependent on cine-LGE registration accuracy, which would 
benefit from the use of MR images with improved contrast 
between myocardial infarct and the surrounding tissues. For 
example, multicontrast late enhancement provides better dif-
ferentiation of myocardial infarct from healthy myocardium 
and blood through acquisition of a series of gadolinium-en-
hancement images at multiple inversion times, generating 
images with varying contrasts.40 Double or triple inversion 
recovery imaging also provides a way to improve the contrast 
between myocardium and blood by suppressing the signals 
from flowing blood, resulting in black-blood images of the 
heart.41 Other techniques include magnetization transfer and 
phase-sensitive inversion recovery.42 To our knowledge, this 

T A B L E  4   Comparison of the absolute differences (mean ± SD) between automated vs. manual (DiffAut-Man) and F.G. versus T.E.'s manual 
(DiffMan-Man) IC, GZ, and IC + GZ volumes (mL) for n = 87 slices from 10 pigs.

Differences (mL) SD method FWHM method

Tissues DiffAut-Man DiffMan-Man P Value DiffAut-Man DiffMan-Man P Value

IC 0.07 ± 0.06 0.06 ± 0.08 .43 0.04 ± 0.04 0.01 ± 0.01 < .0001

GZ 0.06 ± 0.07 0.04 ± 0.05 .004 0.11 ± 0.12 0.12 ± 0.15 .97

IC + GZ 0.10 ± 0.10 0.08 ± 0.10 .30 0.11 ± 0.12 0.12 ± 0.15 .38

DiffAut-Man, absolute differences of automated versus manual; DiffMan-Man, absolute differences of F.G. versus T.E.'s manual.
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study provided the first investigation of cine myocardium 
segmentation and cine-LGE registration performance eval-
uation around the local scar region in addition to the entire 
myocardium. The developed cine segmentation and cine-
LGE MRI registration components constitute important steps 
toward integrating high-resolution prior cine and LGE scar 
maps for applications, including image-guided interventions 
and computational modeling of electro-mechanical function, 
which benefit the most from integrated cardiac anatomy and 
MI heterogeneity information.43,44

Our algorithm provided LGE-derived IC, GZ, and IC + 
GZ biomarker measurements that were strongly and signifi-
cantly correlated with manual results. Although manual scar 
quantification can be performed effectively, this approach 
requires experienced observers and significant investment 
of time and expertise, introduces user variability, and is not 
compatible with an efficient clinical workflow. Notably, the 
correlations of automated and manual scar volumes were not 
significantly different from interobserver correlations, that 
is, Fisher z-scores > 0.05 for comparison of all Pearson cor-
relations (Table 2). In addition, the ICCs between automated 
and manual scar volumes were similar and comparable to that 
between the 2 manual observers (Table 3). For the FWHM 
method, the relatively high ICC of 0.995 for the IC volumes 
between the 2 manual observers was due to the elimination of 
manual selection of a hyper-enhanced region and the excel-
lent agreement between repeated manual myocardium seg-
mentation in LGE. As shown in Table 4, for the majority of 
the experiments automated scar segmentation errors were not 
significantly different (P > .05) from intraobserver repeated 
manual segmentation except for IC measurements using the 
FWHM method (P < .0001) and GZ using the SD-based 
method (P = .004). We note that LGE MI heterogeneity quan-
tification is a challenging task, and we observed substantial 
differences between automated versus manual and F.G. ver-
sus T.E.'s manual scar volumes in some cases. As shown in 
Figure 5, our approach tends to underestimate IC volumes for 
larger IC; this may be because of the use of a relatively large 
automated remote region, likely resulting in greater SDs and 
higher thresholds of IC for the SD-based method. Similarly, 
the use of larger automated remote regions may result in 
greater maximal image signal intensities and thresholds of 
GZ/IC + GZ, and therefore, smaller GZ/IC + GZ volumes 
for the FWHM method. To explore this, we implemented the 
automated SD and FWHM methods using smaller automated 
remote regions. In particular, we eroded the largest connected 
component of the initial automated remote region in step 3b 
to a maximum size of 100 pixels (similar to the size of man-
ual remote regions), and then used the largest remaining con-
nected component as the final remote regions for automated 
LGE MI heterogeneity analysis. For the original automated 
SD method, IC volumes = 0.36 ± 0.16 mL; r = 0.86, y = 
0.69x + 0.13; bias = 0.03 ± 0.10 mL. For the new automated 

SD method using smaller remote regions, IC volumes = 
0.54 ± 0.26 mL; r = 0.82, y = 0.91x + 0.14; bias = 0.12 
± 0.12 mL, as shown in Supporting Information Figure S3. 
Similarly, we implemented the automated FWHM method 
using the smaller automated remote regions that were used 
in the new automated SD method. For the original automated 
FWHM method, GZ volumes = 0.31 ± 0.22 mL; r = 0.70, y = 
0.85x + 0.07; bias = 0.03 ± 0.16 mL. For the new automated 
FWHM method using smaller remote regions, GZ volumes 
= 0.38 ± 0.27 mL; r = 0.79, y = 1.13x + 0.06; bias = 0.10 
± 0.16 mL, as shown in Supporting Information Figure S4. 
For both experiments, we observed improvements in the IC/
GZ volume underestimation (Supporting Information Figure 
S3 vs. Figure 5, Supporting Information Figure S4 vs. Figure 
6), suggesting that the previous IC/GZ volume underestima-
tion in the automated SD/FWHM methods was because of 
the use of relatively large automated remote regions. The re-
sulting new correlations (r), reproducibility (ICC), and abso-
lute difference (DiffAut-Man) between automated and manual 
IC, GZ, and IC + GZ volumes are provided in Supporting 
Information Tables S1, S2, and S3, respectively. Overall, the 
new correlations, agreement, and reproducibility are worse 
than the original results without erosion.

The differences between automated and manual IC vol-
umes may be attributed to cine myocardium segmentation 
and cine-LGE registration errors whereby small errors 
could result in inclusion of tissues with high signal inten-
sities beyond the myocardium (see the bright pixels on the 
epicardium in the LGE in Figure 3A-B for an example). 
These observations suggest that the automated remote re-
gion selection method requires further investigation, and 
this represents our future work. Nonetheless, the automated 
IC, GZ, and IC + GZ volume errors were similar to and 
within the range of interobserver measurements, as shown 
in Supporting Information Figure S2 and the paired t tests 
in Table 4. These results suggest that the MI heterogeneity 
provided by our approach demonstrates potential worthy of 
further clinical investigation for assessment of the risk of 
cardiac arrhythmia and selection of candidates for appro-
priate ICD therapies. The automated and manual MI hetero-
geneity results derived using the SD method were different 
from the FWHM method (Figure 3 vs. Figure 4), and simi-
lar results were shown in previous studies.19 The differences 
in IC volumes provided by the (automated and manual) 
FWHM and SD methods are likely because the FWHM 
method requires identification of a region with high signals 
(threshold of IC = 0.5*maximal signal in the myocardium), 
which is relatively easier and more reproducible than man-
ual selection of a remote region with medium-to-low and 
homogeneous image signal intensities as for the SD method 
(threshold of IC = mean + 5*SD of the signals in the man-
ual remote region). This results in lower variability and po-
tentially higher agreement in IC segmentation for FWHM 
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compared with the SD method. For GZ segmentation, both 
FWHM and SD methods require manual selection of a re-
mote region with medium-to-low and homogeneous image 
signal intensities. In particular, the maximal signal inten-
sity of a single pixel in the remote region is used as the 
threshold of GZ for the FWHM method; the mean + 2*SD 
of the signal intensities of a cluster of pixels in the remote 
region is used as the threshold of GZ for the SD method. 
Therefore, the threshold of GZ for the FWHM method is 
likely more variable and dependent on the remote region, 
whereas the mean and SD of the signals in the remote re-
gion, which are used to generate the threshold of GZ for the 
SD method, are more robust and less variable. This leads to 
more reproducible and potentially higher agreement in GZ 
segmentation for SD compared with the FWHM method. 
Based on this observation, it might be possible to develop 
a hybrid method that uses FWHM for IC segmentation 
and SD for GZ segmentation. However, this may result in 
nonunique classification of myocardial pixels because the 
threshold of IC may be lower than the threshold of GZ in 
the hybrid method. We note that clinical applications are 
more complex and challenging and involve various data-
sets. Therefore, determination of the validity of this new ap-
proach necessitates further and comprehensive evaluation. 
Regardless, the focus of the current work is to segment and 
register cardiac MR images with multiple contrasts and to 
automate the existing scar quantification pipeline as op-
posed to a comparison of the well-studied SD and FWHM 
scar quantification methods or development of new LGE 
analysis methods. In recognition that there is no consensus 
on the best method for scar quantification, and that both 
SD and FWHM methods are widely used and clinically ac-
cepted, our approach provides a way to automate and ex-
pedite the integration of cardiac MR cine images into an 
existing scar quantification pipeline.

The proposed approach provided rapid and automated 
cine segmentation, cine-LGE registration, and MI hetero-
geneity quantification, and was computationally efficient, 
making it suitable for clinical use. Current implementations 
of the SD and FWHM methods require substantial user in-
teractions at several points for myocardium segmentation, 
reference remote myocardium selection, and manual cor-
rections. These steps result in lengthy processing times. The 
proposed automated approach required less than 5 minutes 
to register cine and LGE and to generate LGE scar volume 
measurements and heterogeneity maps for each dataset with 
accuracy comparable to manual methods. The computational 
efficiency of our automated algorithm pipeline may be fur-
ther optimized, for example, using more advanced CPUs and 
GPUs. As shown in Figures 3 and 4, the initial scar maps gen-
erated using the automated and manual methods are “noisy.” 
The developed normalized cut approach provided a way to 
effectively “denoise” the initial scar maps without requiring 

manual interactions, and the MI heterogeneity quantification 
required ~0.2 s per LGE slice. Whereas the potential of our 
approach was demonstrated on n = 87 LGE slices contain-
ing scar, we also evaluated another 10 slices not containing 
scar. We observed false positive IC/GZ pixels in these slices 
for both automated and manual FWHM and SD methods that 
were implemented in 2D. However, the thresholds of IC and 
GZ for both automated and manual methods in these slices 
were substantially lower than in those containing scar. This 
observation may be used to identify slices not containing scar 
in future work. In addition, the false positive pixels in LGE 
slices not containing scar are mainly caused by random noise 
without a fixed pattern. For example, the “IC/GZ” pixels in 
these slices are scattered and randomly distributed in the en-
tire myocardium, whereas the IC/GZ pixels in a slice con-
taining scar are patchy and spatially compact. Furthermore, 
the proposed normalized cut filter in our algorithm takes into 
account the IC/GZ pixel location information and generates 
spatially contiguous IC/GZ maps across slices for 3D-based 
LGE analysis, which could mitigate the false positives (see 
Figures 3 and 4 for examples). Moreover, 3D LGE images 
may be analyzed slab by slab, where several contiguous slices 
are grouped and segmented together using the same IC and 
GZ thresholds. This may reduce the need to exclude slices not 
containing scar and further eliminate the potential for false 
positives. Our approach was based on manual selection of 
LGE slices containing scar, which we suggest effectively lim-
ited false positives without substantially compromising the 
workflow efficiency. Moving forward with real-time image 
guided cardiac ablation, it would be beneficial to fuse cine 
cardiac anatomy and LGE MI heterogeneity information to 
maximize procedural efficiency and improve patient out-
comes. Accordingly, future work will involve optimization of 
our approach for this and other applications.

We acknowledge several study limitations. We explored 
a preclinical pig model with myocardial infarct created by 
occluding the left anterior descending coronary artery; cine 
and LGE MR imaging were performed under general anes-
thesia with mechanically controlled respiration. Given this 
experiment setup, the image datasets and the obtained re-
sults likely represent easier cases, and we acknowledge this 
as a major limitation of this study. To integrate this tool for 
clinical applications, it is critical to comprehensively vali-
date the performance of our approach on much more diverse 
patient data. However, since March in 2020, patient studies 
have been severely restricted due to limitations imposed to 
manage the COVID-19 pandemic. As a result, the obtained 
results possibly represent the best-case scenarios, and we 
caution the interpretation of the derived cine myocardium 
segmentation, cine-LGE registration, and LGE MI heteroge-
neity measurements. We note that real clinical applications 
may involve more complexity and challenges that need to 
be addressed. For example, in patient imaging it is usually 
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difficult to control or reproduce the breath-hold levels during 
cine and LGE image acquisition. These effects may be fur-
ther aggravated by patients’ physiological and pathological 
conditions, for example, patient motion or cardiac arrhyth-
mia. In addition, the presence of MR-compatible implantable 
devices may cause imaging artifacts and degraded image 
quality. Furthermore, the image navigator efficiency may be 
compromised, slowing the free-breathing 3D LGE acquisi-
tions and producing suboptimal myocardial signal nulling. 
Together, these factors may cause slice misalignment in 
the 2D cine stack and partial volume effects through inter-
polation, imaging artifacts, noise, and suboptimal contrast 
between myocardium and surrounding tissues in 3D LGE. 
Compared with the relatively consistent myocardial infarct 
in a pig model, patient datasets may have more variable LV 
scar morphology, size, and location; the diversity in the MI 
patient population could contribute to degraded performance 
in quantifying MI. There is also evidence that reactive fibro-
sis leads to remodeling of noninfarcted myocardium, and dif-
fuse fibrosis may begin to develop in noninfarcted regions 
to compensate for the dysfunctional infarcted myocardium,45 
imposing further challenges in identifying a true remote ref-
erence region that is detrimental to scar quantification. These 
factors and issues must be carefully considered and addressed 
before clinical implementation of this approach. In cases of 
difficulties seen when applying this approach to patient data, 
we would further optimize the pipeline accordingly. For cine 
myocardium segmentation, the trained U-net model in this 
study may be adapted to new patient datasets through trans-
fer learning by fine-tuning the network on a relatively small 
number of manually segmented patient images. For cine-
LGE image registration, we note that several state-of-the-art 
registration algorithms, for example, NiftyReg (http://cmict​
ig.cs.ucl.ac.uk/wiki/index.php/NiftyReg) and Advanced 
Normalization Tools (http://stnava.github.io/ANTs/) have 
demonstrated excellent performance and have been widely 
used for various preclinical and clinical applications. These 
registration algorithms provide a way to facilitate cine-LGE 
image registration. The subsequent automated remote region 
selection procedure may be optimized using advanced pat-
tern recognition techniques to mimic manual selection of 
homogeneous remote myocardium regions. The initial scar 
maps may be similarly postprocessed using the normalized 
cut procedure that takes into account the location information 
and regularizes the contiguity of scar voxels in 3D space. The 
demonstrated promise on controlled preclinical datasets and 
the proposed potential solutions suggest that our approach 
provides promise toward clinical use, which represents the 
focus of our next efforts. In the current implementation of our 
algorithm, we used 2D cine stacks of thick short-axis slices, 
and the partial volume effects impact image quality and 
downstream analyses. The image quality and anatomical in-
formation may be enhanced using higher resolution 3D cine 

acquisitions, and we are in the process of optimizing these 
volumetric image acquisition methods. In addition, we evalu-
ated the performance of our algorithm with fixed thresholds 
for the SD and FWHM methods, whereas various threshold 
definitions have been used in the literature. However, cur-
rently there is no consensus on the best method to use in the 
community, and one of the main aims of this work is to im-
prove the usability and reproducibility of existing scar quanti-
fication methods. Addressing these limitations represents our 
future research directions.

5  |   CONCLUSION

In summary, we developed and evaluated an approach that 
provides automated and rapid cine myocardium segmen-
tation, cine-LGE MRI registration, and LGE myocardial 
infarct heterogeneity quantification with high accuracy, pre-
cision, and computational efficiency in preclinical studies, 
supporting future clinical studies of LGE myocardial infarct 
heterogeneity analysis.
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FIGURE S1 Illustration of the global and regional quanti-
fication of cine myocardium segmentation and cine-LGE 
registration. A) Global quantification of cine segmentation 
and cine-LGE registration accuracies using the entire myo-
cardium and the complete epicardial/endocardial contours in 
purple for each slice. B) A bounding box in dashed yellow 
indicates the scar region used for regional quantification of 
cine segmentation and cine-LGE registration accuracies C) 
and the associated segments of the epicardial/endocardial 
contours D)
FIGURE S2 Comparison of IC, GZ, and IC+GZ volumes 
generated by automated and manual segmentation. A) 
Automated and the mean of the 12 sets of manual scar vol-
umes by two observers using the SD and FWHM methods. 
B) Mean of six sets of the scar volumes provided by FG and 
TE using the SD and FWHM methods. Values are means for 
n = 87 slices from 10 pigs and error bars represent standard 
deviation
FIGURE S3 Relationships and agreement of automated 
(VAut) and manual (VMan) as well as manual and manual 

IC, GZ, and IC+GZ volumes (n = 87 slices) using the SD 
method using smaller automated remote regions through ero-
sion. Top row: Linear regression of automated and the mean 
of the 12 sets (six sets for each manual observer) of manual 
IC, GZ, and IC+GZ volumes (black), and the mean of the 
six sets of manual results for FG and TE (gray). Bottom row: 
Bland-Altman plots of agreement for automated and manu-
ally generated (mean of the 12 sets of results for two man-
ual observers) IC, GZ, and IC+GZ volumes (black), and the 
mean of the manual measurements provided by FG and TE 
(gray). Solid line indicates the biases and dotted lines repre-
sent the 95% limits of agreement
FIGURE S4 Relationships and agreement of automated 
(VAut) and manual (VMan) as well as manual and manual IC, 
GZ, and IC+GZ volumes (n = 87 slices) using the FWHM 
method using smaller automated remote regions through ero-
sion. Top row: Linear regression of automated and the mean 
of the 12 sets (six sets for each manual observer) of manual 
IC, GZ, and IC+GZ volumes (black), and the mean of the 
six sets of manual results for FG and TE (gray). Bottom row: 
Bland-Altman plots of agreement for automated and manu-
ally generated (mean of the 12 sets of results for two man-
ual observers) IC, GZ, and IC+GZ volumes (black), and the 
mean of the manual measurements provided by FG and TE 
(gray). Solid line indicates the biases and dotted lines repre-
sent the 95% limits of agreement
TABLE S1 Pearson correlations (r) for automated vs manual 
(Aut. vs Man.) and FG vs TE’s manual (Man. vs Man.) IC, GZ, 
and IC+GZ volumes for n = 87 slices from 10 pigs. Fisher 
z-transformation was used to compare the correlation coeffi-
cients. Automated SD and FWHM segmentation results were 
based on smaller automated remote regions through erosion
TABLE S2 Reproducibility of automated and manual MI 
heterogeneity quantification. Automated SD and FWHM 
segmentation results were based on smaller automated re-
mote regions through erosion
TABLE S3 Comparison of the absolute differences (mean 
± SD) between automated vs manual (DiffAut-Man) and FG vs 
TE’s manual (DiffMan-Man) IC, GZ, and IC+GZ volumes (mL) 
for n = 87 slices from 10 pigs. Automated SD and FWHM 
segmentation results were based on smaller automated re-
mote regions through erosion
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