Research  >  Research  >  Labs & groups  >  Multimodal brain imaging and modeling  >  Projects  >  Magnetic Resonance Imaging
PAGE
MENU

Magnetic Resonance Imaging

Magnetic resonance imaging has millimetre spatial resolution and versatile contrasts. It has been extensively used in clinical medicine and neuroscience studies to provide structural, functional and metabolic information. Specifically, structural or anatomical MRI can show cortical and subcortical structures. Functional MRI using intrinsic hemodynamic response contrast has become a prevailing method of mapping human brain function. Magnetic resonance spectroscopy and spectroscopic imaging can quantify and delineate the spatial distribution of metabolites.

We are advancing MRI technology to improve its spatiotemporal resolution and sensitivity. We aim to develop a tailored combination of receiver coil arrays, spatial encoding magnetic fields, main magnetic field, pulse sequences and image reconstruction algorithms to optimize MRI in different applications.

Selected publications

Spatial encoding using nonlinear gradient coils

Hsu YC, Chern IL, Zhao W, Gagoski B, Witzel T, Lin FH. Mitigate B1+inhomogeneity using spatially selective RF excitation with generalized spatial encoding magnetic fields. Magn Reson Med. 2014 Apr;71(4):1458–69.

Lin FH. Multidimensionally encoded magnetic resonance imaging. Magn Reson Med. 2013 Jul;70(1):86–96.

Lin FH, Witzel T, Schultz G, Gallichan D, Kuo WJ, Wang FN, Hennig J, Zaitsev M, Belliveau JW. Reconstruction of MRI data encoded by multiple nonbijective curvilinear magnetic fields. Magn Reson Med. 2012 Oct;68(4):1145–56.

Fast functional MRI

Hsu YC, Chu YH, Tsai SY, Kuo WJ, Chang CY, Lin FH. Simultaneous multi-slice inverse imaging of the human brain. Sci Rep. 2017 Dec 5;7(1):17019. doi: 10.1038/s41598-017-16976-0.

Lin FH, Nummenmaa A, Witzel T, Polimeni J, Zeffiro TA, Wang FN, Belliveau JW. Physiological noise reduction using volumetric functional magnetic resonance inverse imaging. Hum Brain Mapp. 2012 Dec;33(12):2815–30.

Lin FH, Tsai KW, Chu YH, Witzel T, Nummenmaa A, Raij T, Ahveninen J, Kuo WJ, Belliveau JW. Ultrafast inverse imaging techniques for fMRI. Neuroimage. 2012 Aug 15;62(2):699–705.

Tsai KW, Nummenmaa A, Witzel T, Chang WT, Kuo WJ, Lin FH. Multi-projection magnetic resonance inverse imaging of the human visuomotor system. Neuroimage. 2012 May 15;61(1):304–13.

Lin FH, Witzel T, Chang WT, Tsai KW, Wang YH, Kuo WJ, Belliveau JW. K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems. Neuroimage. 2010 Feb 15;49 (4):3086–98.

Lin FH, Witzel T, Mandeville JB, Polimeni JR, Zeffiro TA, Greve DN, Wiggins G, Wald LL, Belliveau JW. Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing. Neuroimage. 2008 Aug 1;42 (1):230–47.

Ultra-low-field MRI

Hsu YC, Vesanen PT, Nieminen JO, Zevenhoven KC, DabekJ , Parkkonen L, Chern IL, Ilmoniemi RJ, Lin FH. Efficient concomitant and remanence field artifact reduction in ultra-low-field MRI using a frequency-space formulation. Magn Reson Med. 2014 Mar;71(3):955–65.

Lin FH, Vesanen PT, Nieminen JO, Hsu YC, Zevenhoven KC, Dabek J, Parkkonen LT, Zhdanov AV, Ilmoniemi RJ. Noise amplification in parallel whole-head ultra-low-field magnetic resonance imaging using 306 detectors. Magn Reson Med. 2013 Aug;70(2):595–600.

Lin FH, Vesanen PT, Hsu YC, Nieminen JO, Zevenhoven KC, Dabek J, Parkkonen LT, Simola J, Ahonen AI, Ilmoniemi RJ. Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity. PLoS One. 2013 Apr 23;8(4):e61652. doi:10.1371/journal.pone.0061652.

Principal investigator

Fa-Hsuan Lin
View profile

Contact

Sunnybrook Health Sciences Centre
2075 Bayview Avenue, M6 607
Toronto, ON M4N 3M5
linlab.recruitment@
sunnybrook.ca

416-480-6100 ext. 685447